

SmartSPIN

Energy efficiency in the commercial rented sector and verification of rebound effect after PV system installation in shopping centre in Spain

Luciano De Tommasi

Workshop: Fostering changes in energy consumption: a pathway to demand reduction University of Padova 26th October 2023

Outline

$\bullet \bullet \bullet \bullet \bullet$

- Introduction to the SmartSPIN project
- Business model and revenue streams
- SmartSPIN service and its validation
- Impacts
- Rebound effect at La Gavia Shopping Centre
- Modelling of Rebound Effect
- > Considerations on the optimal share of energy savings between building owner and renters
- Conclusions

SmartSPIN Project

Business model & revenue streams

Business model & revenue streams

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 10133744.

D3.5 Contractual

Impacts for Spain

$\bullet \bullet \bullet \bullet \bullet$

Project Performance Indicator	Old Numbers	New Numbers
Renewable Electricity Generation (GWh/year)	0	1.16
Primary Energy Saving triggered by the project (GWh/year)	1.82	3.99
Reduction in GHG emission triggered by the project (tonnes CO2eq/year)	283	617
Investment in sustainable energy triggered by the project (€M)	6.17	XXX

Impacts total

••••	Project Performance Indicator	Old Impact Numbers	New Impact Numbers
	Floor Area (m²)	179,309	166,566
	Baseline Electricity Consumption (GWh/year)	11.54	10.05
	Baseline Natural Gas Consumption (GWh/year)	3.93	2.32
	Renewable Electricity Generation (GWh/year)	1.10	1.36
	Primary Energy Saving triggered by the project (GWh/year)	4.53	4.72
	Reduction in GHG emission triggered by the project (tonnes CO2eq/year)	941	812
	Investment in sustainable energy triggered by the project (€M)	8.27	7.38

Rebound effect at La Gavia shopping centre (Madrid)

- A PV-system was installed in La Gavia shopping centre, located in Ensanche de Vallecas district, 11 km from the city centre of Madrid.
- ➤ La Gavia includes 175 retail shops.
- Data collection started on September 1st, 2022, with hourly resolution.

Energy consumption cluster	Estimated rebound effect
Total energy consumption	60.25%
Mall	32.5 %
HVAC 1	87.11 %
HVAC 2	105.01 %

Model including lagged PV electricity generation:

 $E_{C,Tot}^{(t)} = 214.2001 - 1.2093 \cdot E_{PV,Tot}^{(t-4)} - 0.6694 \cdot E_{PV,Tot}^{(t-3)} + 0.3958 \cdot E_{PV,Tot}^{(t-2)} - 1.0070 \cdot E_{PV,Tot}^{(t-1)} + 1.1766 \cdot E_{PV,Tot}^{(t)}$ root mean squared error of 112.1167 versus 122.8736 of instantaneous effect model

Modelling of rebound effect

- Q: What does determine the optimal share of energy savings between building owner and tenant?
- > A: The revenue share for the building owner θ and renters 1θ
- $> \theta = 1$ the owner takes all the savings and rebound effect is maximum

Revenue stream from energy savings

Optimal revenue share for building owner

$\bullet \bullet \bullet \bullet \bullet$

Parameters used in next two slides:

1 Volatility of the O&M cost coefficient: $\sigma_H = 0.25$ 2 Volatility of the energy saving amount coefficient: $\sigma_K = 0.01$ 3 Energy price drift effect: $\alpha_E = 0.0523$ 4 Energy price volatility effect: $\sigma_E = 0.0856$ 5 O&M trend index: $\delta = 1.025$ 6 Initial value of the O&M cost coefficient: $H_0 = 0.0036$ 7 Initial value of the energy saving amount coefficient: $K_0 = 0.3$ 8 Initial value of the energy price: $PE_0 = 0.24$ 9 Economic lifetime of the energy efficiency system: N = 2510 Capital cost of the energy efficiency investment: $I_C = 6170000$ *(invested by ESCO)* 11 Annual energy cost savings guarantee: **G** = 431900 12 Owners' expected revenue share within the guarantee: α = 1 13 Owners' excess revenue share beyond the guarantee: β = 0.2 14 Owners' expected rate of return: r_0 = 0.031 15 Renters' expected rate of return: r_R = 0.031 16 ESCOs' expected rate of return: r_E = 0.06 17 Owners' expected revenue share with renters: θ = variable 18 Maximum renters' rebound effect: ϕ = variable 19 Risk attitude of renters: ρ = -20

Reference:

Lu, Y., Zhang, N., & Chen, J. (2017). A behavior-based decision-making model for energy performance contracting in building retrofit. *Energy and Buildings*, *156*, 315-326.

Optimal revenue share for building owner

$\bullet \bullet \bullet \bullet \bullet$

- > We build on Lu, Zhang & Chen (2017) to gain further insights on how the renters' rebound effect influences the optimal revenue shares for the building owner θ_{opt} and renters 1 θ_{opt}
- The building owner's Net Present Value depends on the revenue share for the building owner (agreed with renters) and on the contract duration n.
- > The optimal revenue share for building owner θ_{opt} is the revenue share that maximizes building owner's Net Present Value. θ_{opt} depends on the rebound effect Φ

 $\Phi = 0$

 $\Phi = 0.2$

 $\Phi = 0.4$

Optimal revenue share for building owner

$\bullet \bullet \bullet \bullet \bullet$

04/01/2024

- > The optimal revenue share for building owner θ_{opt} and building owner's Net Present Value NPV_{opt} depend on the rebound effect $\boldsymbol{\Phi}$
- > As the rebound effect $\boldsymbol{\phi}$ increases θ_{opt} will decrease as the building owner will prefer to share more savings with renters to incentivise them to consume less energy.

Conclusions

$\bullet \bullet \bullet \bullet \bullet$

- SmartSPIN is developing a business model applicable to the commercial rented sector where energy savings from an energy efficiency project are divided between building owner, renters and Energy service company.
- Bargaining and contractual agreements between parties need to be facilitated through a model that determines the optimal shares of savings between building owner and renters.
- Energy Service Companies and building owners must be made aware of the fact that rebound effect may reduce expected energy savings.
- Sharing an appropriate fraction of energy savings 1θ with renters may incentivise energy efficient behaviours and may even increase revenue streams for building owners.
- Data collected from the field about PV-generation and energy consumption at La Gavia Shopping Centre was analysed to determine rebound effect.
- Further work: measured data will be used to extend a state-of-the art model for rebound effect found in the literature which does assumptions on the coefficients of the model.

Backup

$\bullet \bullet \bullet \bullet \bullet$

SmartSPIN Tookit

Business model CANVAS

		VALUE PROPOSITION	CUSTOMER RELATIONSHIP	CUSTOMER SECMENT
NEL PARINERS				CUSIOMER SEGMENT
> Main Material/Components	> Energy management data collection &	> The SmartSPIN Toolkit is an all-in-one	> Face customer as partner. Seek	 Building owners (commercial or
suppliers	consulting for energy management optimization	solution for solving the split-incentive	dedicated solutions together.	business buildings, Malls, industrial
- Smart Devices	> Development of sizing tools and user-friendly	issue in the Commercial Rented sector	> Co-Creation for failor made	plants)
- RES & Storage components and	applications	offering along with significant energy	solutions	- Facility Managers & Companies -
Infrastructure	> Activities to define customer's needs and	optimization techniques, transparent	> Flexible contracts	Landlord -Building Management
- E-Mobility intrastructure	requirements for the integration of the	methods for electricity billings in a more	> Green Lease	Companies
- Smart Monitoring & Management	solution/toolkit	democrafized way.	> On bill financing	 Energy users (businesses,
Platform	> Selection of one or more packages of energy	> Standard & flexible/adaptable	> In-partite Energy Performance	industries)
> Contractors/Technical support	conservation measures (that form the solution)	solutions.	Contracting	 Tenants of commercial buildings
network.	> Definition of a staggered plan to implement	> Accessibility in remote support and		and facilities
>EaaS provider/ Market	energy conservation measures	monitoring		
Facilitators	> Measure & verify energy savings	> User Friendly Dashboard/ User Friendly		
>ESCOS	> Run an Energy Performance Contract	Template >		
> Project financier	>Implemention of suggested/selected energy	Smart energy management and control		
> Energy Performance Contracting	saving measures	system		
facilitator	> Awareness raising and customer engagement	>Dynamic tariff for electricity		
> Energy efficiency consultant	> Training and behavioural change of users (TBD)	consumption (TBD)		
	> Dissemination campaign (TBD)	>Electricity Prices Forecasting platform		
		> Sharing the benefits of energy]
	KEY RESOURCES	efficiency and the energy savings	CHANNELS	1
	HUMAN:	between the parties in a fair manner	> B2B & B2C contacts	
	> Partners Technicians/Contractors	> Incentivize both tenants and landlords	> Partnerships (Contractors.	
	>Energy Experts/consultants	in engaging with a EaaS provider to	Technicians)	
	PHYSICAL/MATERIALS	improve energy efficiency of	> Energy Service and Utility	
	Supply chain (orders, procurment warehouse)	commercial buildings.	Companies	
	INTELLECTUAL	> Maximize the investments in energy	> Public tenders	
	Senergy efficiency improvement	efficiency in the commercial rented	> Website Sales & Marketing	
	Equiments (instruments	sector.	> Registers of Energy Performance	
	Equinerilis/insironierilis	>Improved thermal comfort of the	Contracting facilitator	
	Capital (National or EU funding schemes)	occupiers	 Associations of ESCOs 	
	TECHNOLOGY	>Green image of the building with	> Associations of ESCOS	
	> energy efficient equipment and measures	reduced carbon footprint and better	vortal media, comerences,	
	> energy enicient equipment and measures	compitetive opportunity in the market	workshops	
	> building diagnostics tool		>Local/National authorities	
1	 rechnologies for sman controls in building Camiliantian App 		>Regulation/Ministry of Energy	1
	>Gamilication App		1	1
			1	1
			1	1

owner [M EUR] Rebound 4.00 effect Contract duration 17 years 3.75 3.50 Present Value for Contract duration 18 years 3.25 3.00 Contract duration 19 years 2.75 2.50 K 2.25 0.6 0.7 0.8 0.9 1.0 0.5 Owners' expected revenue share with renters [Theta] $n^* = \arg \max (NPV_0)$, subject to $NPV_E > 0$ [W ENK] 0.7 0.6 0.5 0.5 ē 0.4 Value 0.3 Present 0.2 Net 0.1 0.0 0.7 0.5 0.6 0.8 0.9 1.0 Owners' expected revenue share with renters [Theta]

Contract duration 16 years

4.25

- Reference simulation model established to determine optimal revenue share between owners and renters under assumption of performance guarantee from energy efficiency provider (Lua, Zhanga, Chen, 2017).
- ➢ Investment 7.38 M EUR
- Service provider guarantees 7% of investment energy savings per year
- ➢ Optimal share: 80% savings for landlord, 20% for tenant

Landlord will take up to 100% of the energy savings guaranteed by the service provider to maximise their NPV

0.6

0.7

Owners' expected revenue share with renters [Theta]

0.8

0.9

1.0

0.5

Simulation model for optimal revenue share between ESCO, landlord and tenant.

Simulation model for optimal revenue share between ESCO, landlord and tenant. Legend of parameters.

Scenario 1	Scenario 2
1 Volatility of the O&M cost coefficient: $\sigma_{\rm eff} = 0.25$	1 Volatility of the OSM cost coefficient: $\sigma = 0.25$
2 Volatility of the energy saying amount coefficient: $\sigma_{\rm H} = 0.23$	1 Volatility of the operation optime amount coefficient: $\sigma_H = 0.25$
2 Volatility of the energy saving amount coefficient. $\sigma_K = 0.01$	2 Volatility of the energy saving amount coefficient. $\sigma_K = 0.01$
S Energy price unit effect: $\alpha_E = 0.0525$	3 Energy price drift effect: $\alpha_E = 0.0523$
4 Energy price volatility effect: $\sigma_E = 0.0856$	4 Energy price volatility effect: $\sigma_E = 0.0856$
5 O&M trend index: $\delta = 1.025$	5 O&M trend index: δ = 1.025
6 Initial value of the O&M cost coefficient: $H_0 = 0.0036$	6 Initial value of the O&M cost coefficient: $H_0 = 0.0036$
7 Initial value of the energy saving amount coefficient: $K_0 = 0.3$	7 Initial value of the energy saving amount coefficient: $K_0 = 0.3$
8 Initial value of the energy price: $PE_0 = 0.21$	8 Initial value of the energy price: $PE_0 = 0.21$
9 Economic lifetime of the energy efficiency system: $N = 25$	9 Economic lifetime of the energy efficiency system: $\mathbf{N} = 25$
10 Capital cost of the energy efficiency investment: $I_c = 7380000$	10 Capital cost of the energy efficiency investment: $I_{c} = 7380000$
(invested by ESCO)	(invested by landlord)
11 Annual energy cost savings guarantee: G = 500000	11 Annual energy cost savings guarantee: $\mathbf{G} = 500000$
12 Owners' expected revenue share within the guarantee: $\alpha = 1$	12 Owners' expected revenue share within the guarantee: $\alpha = 1$
13 Owners' excess revenue share beyond the guarantee: $\beta = 0.2$	13 Owners' excess revenue share beyond the guarantee: $\beta = 0.2$
14 Owners' expected rate of return: $r_0 = 0.031$	14 Owners' expected rate of return: $r_0 = 0.031$
15 Renters' expected rate of return: $r_R = 0.031$	15 Renters' expected rate of return: $r_R = 0.031$
16 ESCOs' expected rate of return: $r_E = 0.06$	16 ESCOs' expected rate of return: $r_E = 0.06$
17 Owners' expected revenue share with renters: θ = variable	17 Owners' expected revenue share with renters: θ = variable
18 Maximum renters' rebound effect: $\vartheta = 0.15$	18 Maximum renters' rebound effect: $\vartheta = 0.15$
19 Risk attitude of renters: $\rho = -20$	19 Risk attitude of renters: $\rho = -20$

Luciano De Tommasi, Senior Research Engineer, IERC Ruchi Agrawal, Researcher, IERC

....

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033744.

Ten enn